

STLD

Lecture 1

Course Overview

Rajeev Pandey Department Of ECE rajeevvce2007@gmail.com

Overview

° The design of computers

- It all starts with numbers
- Building circuits
- Building computing machines
- ° Digital systems
- ° Understanding decimal numbers
- ° Binary and octal numbers
 - The basis of computers!
- [°] Conversion between different number systems

Digital Computer Systems

° Digital systems consider *discrete* amounts of data.

° Examples

- 26 letters in the alphabet
- 10 decimal digits
- $^\circ$ Larger quantities can be built from discrete values:
 - Words made of letters
 - Numbers made of decimal digits (e.g. 239875.32)
- ° Computers operate on *binary* values (0 and 1)
- ° Easy to represent binary values electrically
 - Voltages and currents.
 - Can be implemented using circuits
 - Create the building blocks of modern computers

Understanding Decimal Numbers

- Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9)
- [°] But how many items does a decimal number represent?
 - $8653 = 8 \times 10^3 + 6 \times 10^{2+} 5 \times 10^{1+} 3 \times 10^{0}$
- ° What about fractions?
 - $97654.35 = 9 \times 10^4 + 7 \times 10^{3+} 6 \times 10^{2+} 5 \times 10^{1+} 4 \times 10^0 + 3 \times 10^{-1+} 5 \times 10^{-2}$
 - In formal notation -> (97654.35)₁₀
- ° Why do we use 10 digits, anyway?

Understanding Octal Numbers

- Octal numbers are made of octal digits: (0,1,2,3,4,5,6,7)
- [°] How many items does an octal number represent?
 - $(4536)_8 = 4x8^3 + 5x8^2 + 3x8^1 + 6x8^0 = (1362)_{10}$
- What about fractions?
 - $(465.27)_8 = 4x8^{2+} 6x8^{1+} 5x8^{0} + 2x8^{-1+} 7x8^{-2}$
- ° Octal numbers don't use digits 8 or 9
- Who would use octal number. anyway?

Understanding Binary Numbers

- [°] Binary numbers are made of <u>binary digits</u> (bits):
 - 0 and 1
- [°] How many items does an binary number represent?
 - $(1011)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = (11)_{10}$
- What about fractions?
 - $(110.10)_2 = 1x2^{2+}1x2^{1+}0x2^{0} + 1x2^{-1+}0x2^{-2}$
- ° Groups of eight bits are called a *byte*
 - (11001001) ₂
- ° Groups of four bits are called a *nibble.*
 - (1101) ₂

Why Use Binary Numbers?

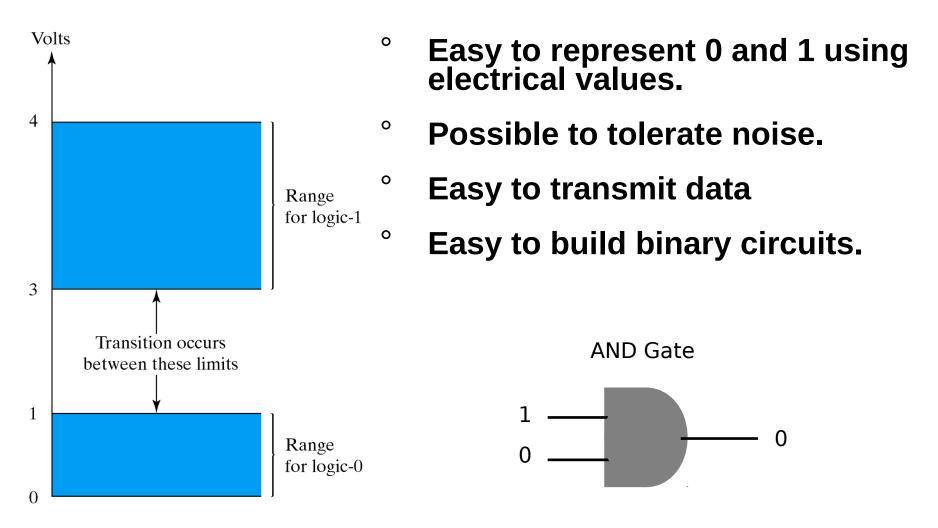
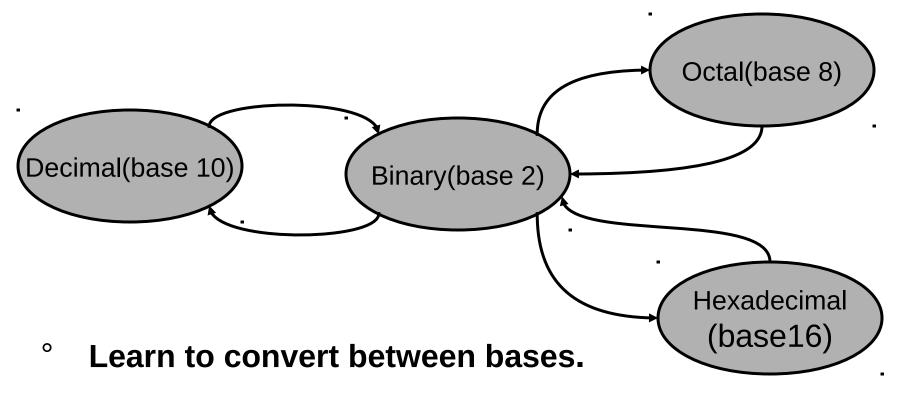


Fig. 1-3 Example of binary signals

Conversion Between Number Bases



- Already demonstrated how to convert from binary to decimal.
- Hexadecimal described in next lecture.

Convert an Integer *from* **Decimal** *to* **Another Base**

For each digit position:

- **1.** Divide decimal number by the base (e.g. 2)
- 2. The *remainder* is the lowest-order digit
- **3.** Repeat first two steps until no *divisor* remains.

Example for (13)_{10:}

	Integer Quotier		Remainder	Coefficient
13/2 =	6	+	1/2	$a_0 = 1$
6/2 =	3	+	0	a ₁ =0
3/2 =	1	+	1/2	a ₂ =1
1/2 =	0	+	1⁄2	a ₃ =1
Anouro	r(12)	_ /		-(1101)

Answer $(13)_{10} = (a_3 a_2 a_1 a_0)_2 = (1101)_2$

Convert an Fraction *from* **Decimal** *to* **Another Base**

For each digit position:

- 1. Multiply decimal number by the base (e.g. 2)
- 2. The *integer* is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.
- Example for (0.625)_{10:}

I	Integer	Fraction		Coefficient	
0.625 x 2	2 =	1	+	0.25	a ₋₁ = 1
0.250 x 2	2 =	0	+	0.50	a ₋₂ =0
0.500 x 2	2 =	1	+	0	a ₋₃ =1

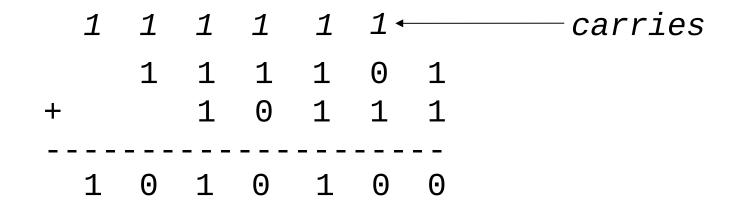
Answer $(0.625)_{10} = (0.a_{-1}a_{-2}a_{-3})_2 = (0.101)_2$

The Growth of Binary Numbers

1	1		-		
	2 ⁿ	n	_	2 ⁿ	n
	2 ⁸ =256	8		2º=1	0
	2º=512	9		2 ¹ =2	1
	210=1024	10		2²=4	2
	211=2048	11		2 ³ =8	3
	2 ¹² =4096	12		24=16	4
Mega	2 ²⁰ =1M	20		25=32	5
Giga	2 ³⁰ =1G	30		26=64	6
Tera	240 =1 T	40		27=128	7
1				1	

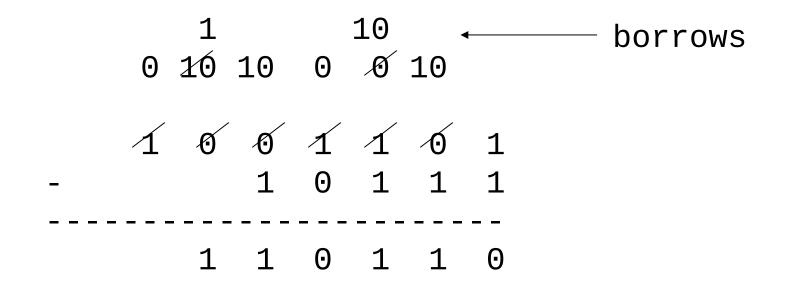
Binary Addition

- ° Binary addition is very simple.
- ° This is best shown in an example of adding two binary numbers...



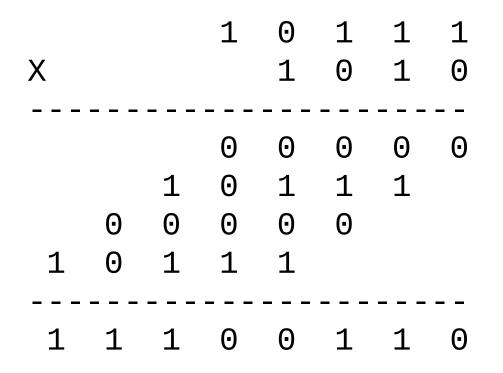
Binary Subtraction

- We can also perform subtraction (with borrows in place of carries).
- [°] Let's subtract (10111)₂ from (1001101)₂...



Binary Multiplication

 Binary multiplication is much the same as decimal multiplication, except that the multiplication operations are much simpler...



Convert an Integer *from* Decimal *to* Octal

For each digit position:

- 1. Divide decimal number by the base (8)
- 2. The *remainder* is the lowest-order digit
- **3.** Repeat first two steps until no *divisor* remains.

Example for (175)_{10:}

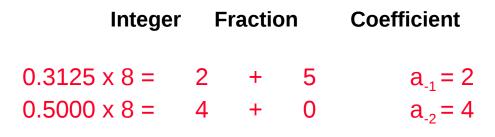
•		Remainder	Coefficient
21	+	7/8	$a_0 = 7$
2	+	5/8	a ₁ =5
0	+	2/8	a ₂ = 2
	Quotie 21 2	Quotient 21 + 2 +	21 + 7/8 2 + 5/8

Answer $(175)_{10} = (a_2 a_1 a_0)_2 = (257)_8$

Convert an Fraction *from* **Decimal** *to* **Octal**

For each digit position:

- 1. Multiply decimal number by the base (e.g. 8)
- 2. The *integer* is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.
- Example for (0.3125)_{10:}



Answer $(0.3125)_{10} = (0.24)_8$

Summary

- [°] Binary numbers are made of <u>binary digits</u> (bits)
- ° Binary and octal number systems
- ° Conversion between number systems
- ° Addition, subtraction, and multiplication in binary

